Wednesday 04/12	
Caves d'Esclangon (floor -1), 16h30	
Learning to Mitigate Externalities: the Coase Theorem with Hindsight Rationality	Antoine Scheid
Logarithmic Smoothing for Pessimistic Off-Policy Evaluation, Selection and Learning	Imad Aouali, Otmane Sakhi
Extensive-Form Game Solving via Blackwell Approachability on Treeplexes.	Julien Grand-Clément
Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms.	Sanon Grana Granan
The Value of Reward Lookahead in Reinforcement Learning	Naday Merlis
Reinforcement Learning with Lookahead Information	Traday Morne
MetaCURL: Non-stationary Concave Utility Reinforcement Learning	Bianca Marin Moreno
A Concept-Based Explainability Framework for Large Multimodal Models	Pegah Khayatan, Jayneel Parekh
Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits	Flore Sentenac
DEFT: Efficient Finetuning of Conditional Diffusion Models by Learning the Generalised	Shreyas Padhy, Alexander Denker
Causal Contrastive Learning for Counterfactual Regression Over Time	Mouad El Bouchattaoui
Shape analysis for time series	Samuel Gruffaz
Confidence Calibration of Classifiers with Many Classes	Adrien Le Coz
Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation	Alexandre Proutiere
Unravelling in Collaborative Learning	Aymeric Capitaine
DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation	Maxime Vono
Near-Optimal Distributionally Robust RL with General Lp Norms	Pierre Clavier
Time-Constrained Robust MDPs	
Hall d'Esclangon (floor 0), 16h30	
Archaeoscape: Bringing Aerial Laser Scanning Archaeology to the Deep Learning Era	Yohann Perron
Towards training digitally-tied analog blocks via hybrid gradient computation	Maxence Ernoult
WFCRL: A Multi-Agent Reinforcement Learning Benchmark for Wind Farm Control	Claire Bizon-Monroc
Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps	Sonia Mazelet
An eye for an ear: zero-shot audio description leveraging an image captioner with	
audio-visual token distribution matching	Hugo Malard
When is an Embedding Model More Promising than Another	Maxime Darrin
Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning	Armand Kassai, Jean-Noel Vittaut
General Detection-based Text Line Recognition	Syrine Kalleli, Raphael Baena
Bridging semantics and pragmatics in information-theoretic emergent communication	Eleonora Gualdoni
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes	Shreyas Padhy
Only Strict Saddles in the Energy Landscape of Predictive Coding Networks?	El Mehdi Achour
Combining Statistical Depth and Fermat Distance for Uncertainty Quantification	Hai-Vy Nguyen, Reda Chhaibi
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning	Lucas Meyer
Iteration heads: A Mechanistic Study of Chain-of-Thought	Vivien Cabannes
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence	Thomas Robert
DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut	Paul Couairon
MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation under Distribution	
Shifts	Ambroise Odonnat, Vasilii Feofanov
Don't Know: Explicit Modeling of Uncertainty with an [IDK] Token	Konstantin Dobler
SCAI (floor 1), 16h30	
A generalized neural tangent kernel for surrogate gradient learning	Luke Eilers
Dimension-free deterministic equivalents for random feature regression	Leonardo Defilippis
Barely Random Algorithms for Metrical Task Systems	Romain Cosson
Statistical and Geometrical properties of Kernel Kullback-Leibler divergence	Clémentine Chazal
Topological Generalization Bounds for Discrete-Time Stochastic Optimization Algorithms	Benjamin Dupuis
Optimal Classification under Performative Distribution Shift	Edwige Cyffers, Olivier Cappé, Jamal Atif
Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous	
Data	Jiaojiao Zhang Adelina Fermanian, Sohihan Surendran, Antoine
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation	Adeline Fermanian, Sohiban Surendran, Antoine Godichon-Baggioni
A Novel Approach to Loss Landscape Characterization without Over-Parametrization	Rustem Islamov
Variational Graph Contrastive Learning	Shifeng Xie
In-context Quantile Regression for Multi-product Inventory Management using Time-series	-
Transformers	Sohom Mukherjee
Bandits with Abstention under Expert Advice	Maximilian Thiessen
An Analysis of Elo Rating Systems via Markov Chains	Luca Zanetti
All Allalysis of Elo Italing Systems via Iviation Chains	

A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems	Amin Charusaie
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient	Faulinand Canana Astatas Castatas B
Descent and Adaptive Entropic Regularization	Ferdinand Genans, Antoine Godichon-Baggioni
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving	Michal Valko
Diffeomorphic interpolation for efficient persistence-based topological optimization	Théo Lacombe
Progressive Entropic Optimal Transport Solvers Parnian Kassraie	
Learning Elastic Costs to Shape Monge Displacements	
GENOT: A Neural Optimal Transport Framework for Single Cell Genomics	Marco Cuturi
Thursday 05/12	
Hall d'Esclangon (floor 0), 12h30	
Natermarking Makes Language Models Radioactive	Pierre Fernandez, Tom Sander
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks	Michael Kirchhof
FairJob: A Real-World Dataset for Fairness in Online Systems	Mariia Vladimirova
Consent in Crisis: The Rapid Decline of the Al Data Commons	Christopher Klamm
Functional Bilevel Optimization for Machine Learning	Ieva Petrulionyte, Julien Mairal
Mirror and Preconditioned Gradient Descent in Wasserstein Space	Clément Bonet
The Road Less Scheduled	Konstantin Mishchenko
What makes unlearning hard and what to do about it	Kairan Zhao
Learning with Fitzpatrick Losses	Seta Rakotomandimby, Michel De Lara, Mathieu Blondel
Learning to Embed Distributions via Maximum Kernel Entropy	Oleksii Kachaiev
Piecewise deterministic generative models	Dario Shariatian
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with	
annealing,	David Perera
mplicit Bias of Mirror Flow on Separable Data	Scott Pesme, Radu Dragomir
Learning the Infinitesimal Generator of Stochastic Diffusion Processes	Vladimir Kostic
From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach	Viduitiii Nosiic
Neural Conditional Probability for Inference	Vladimir Kostic, Karim Lounici
Expected Probabilistic Hierarchies	
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks using the Marginal Likelihood	Bertrand Charpentier
Theoretical guarantees in KL for Diffusion Flow Matching	Alain Oliviero-Durmus, Marta Gentiloni Silveri
Near-Optimality of Contrastive Divergence Algorithms	Pierre Glaser
Regression under demographic parity constraints via unlabeled post-processing	Gayane Taturyan
SCAI (floor 1), 12h30	
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss	Paul Krzakala, Rémi Flamary, Florence d'Alché-Buc
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting	Vasilii Feofanov
ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models	Ziwei Ji
	Louis Bethune
Inderstanding Visual Feature Poliance through the Lone of Complexity	
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial	
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits	Julien Zhou, Thibaud Rahier
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs	Julien Zhou, Thibaud Rahier Yannis Karmim
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion
Fowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran
Flowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut
Flowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor
Flowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms Computing the Bias of Constant-step Stochastic Approximation with Markovian Noise	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms Computing the Bias of Constant-step Stochastic Approximation with Markovian Noise Activation Map Compression through Tensor Decomposition for Deep Learning	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr Nicolas Gast
Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms Computing the Bias of Constant-step Stochastic Approximation with Markovian Noise Activation Map Compression through Tensor Decomposition for Deep Learning Improving Neural Network Surface Processing with Principal Curvatures Divide-and-Conquer Posterior Sampling for Denoising Diffusion priors	Julien Zhou, Thibaud Rahier Yannis Karmim Victor Letzelter Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr Nicolas Gast Enzo Tartaglione, Aël Quélennec